Reducing the Environmental Footprint of Unconventional Reservoir Development

Jean-François Poupeau
Executive Vice President
Corporate Development & Communication

The Aspen Institute Forum on Global Energy, Economy and Security
June 10, 2015
This presentation contains “forward-looking statements” within the meaning of the federal securities laws, which include any statements that are not historical facts, such as our financial targets and other forecasts or expectations regarding business outlook; growth for Schlumberger as a whole and for each of its segments (and for specified products or geographic areas within each segment); oil and natural gas demand and production growth; oil and natural gas prices; improvements in operating procedures and technology; capital expenditures by Schlumberger and the oil and gas industry; the business strategies of Schlumberger’s customers; demand for our integrated services; the success of Schlumberger’s joint ventures and alliances and its integration of acquired companies; introduction of new technologies; future global economic conditions; and future results of operations. These statements are subject to risks and uncertainties, including, but not limited to, global economic conditions; changes in exploration and production spending by Schlumberger’s customers and changes in the level of oil and natural gas exploration and development; demand for our integrated services and new technologies; Schlumberger’s future cash flows; general economic, political and business conditions in key regions of the world, including in Russia and the Ukraine; pricing erosion; weather and seasonal factors; operational delays; production declines; inability to acquire target companies or integrate new acquisitions; changes in government regulations and regulatory requirements, including those related to offshore oil and gas exploration, radioactive sources, explosives, chemicals, hydraulic fracturing services and climate-related initiatives; the inability of technology to meet new challenges in exploration; and other risks and uncertainties detailed in our Forms 10-K, 10-Q, and 8-K filed with or furnished to the Securities and Exchange Commission. If one or more of these or other risks or uncertainties materialize (or the consequences of such a development changes), or should underlying assumptions prove incorrect, actual outcomes may vary materially from those reflected in our forward-looking statements. The forward-looking statements speak only as of the date of this presentation, and Schlumberger disclaims any intention or obligation to update publicly or revise such statements, whether as a result of new information, future events or otherwise.
Global Drilling Intensity Will Increase

2014 Liquids Related Activity

Production (MMbpd)
- Saudi: 11.4
- Russia: 10.9
- US: 11.7

Wells Drilled (# wells and sidetracks)
- Saudi: 399
- Russia: 8,688
- US: 35,699

Footage Drilled (Million ft.)
- Saudi: 3
- Russia: 83
- US: 297

Source: IEA, EIA, Spears, SLB Analysis
Emerging Unconventional Plays

Source: Schlumberger
Evolution of North America Basin Development

<table>
<thead>
<tr>
<th>RIGS</th>
<th>WELLS</th>
<th>STAGES</th>
<th>CLUSTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **RIGS**: 1,560 High Spec Rigs
- **WELLS**: ~32,000 Pad Drilling
- **STAGES**: ~400,000 Zipper Fracturing
- **CLUSTERS**: ~2,000,000 Engineered Completions

2013 North America average Horizontal Rig Count
Source: Schlumberger Analysis, RigData, June Warren-Nickle's
Why Hydraulic Fracturing?

Vertical, Perforated Well

315 Sq Ft
200 Ft High x 6” Wellbore

Vertical, Perforated Well with Single Hydraulic Fracture

160,000 Sq Ft
200 Ft High x (1) 200 Ft Frac with 2 Wings Each

Horizontal, Perforated Well with 15 Hydraulic Fractures

2,400,000 Sq Ft
200 Ft High x 6” Wellbore x (15) 200 Ft Frac with 2 Wings Each
How About the Water…

Direct Annual Use for Hydraulic Fracturing:

- Over 90 Billion Gallons in United States
- Average of 2.4 Million Gallons per Well
- Total Associated Costs over $6.4B

Best Practices Include:

- Recycling of Flowback
- Alternate Sources of Water
Production Contribution… Less than Optimal

- Zero Production from at least 10% of Clusters: 58% of Cases
- Decent Distribution: 6% of Cases
- Dominant Clusters: 29% of Cases
- Crossflow: 6% of Cases
Novel Completions Techniques
Novel Completions Techniques

Improvement of well performance
- Typical production increase of 20%

Significant reduction in logistics, safety risks and environmental footprint
- Typical water consumption reduction of 25%
- Typical proppant consumption reduction of 40%
Water Sourcing for Hydraulic Fracturing

Past
- Fresh Water
- Fracturing Location
- Disposal Well

Present
- Fresh Water
- Recycled Water
- Fracturing Location
- Disposal Well

Ideal
- Fresh Water
- Produced Water
- Recycled Water
- Fracturing Location
- Disposal Well
Water Sourcing for Hydraulic Fracturing

<table>
<thead>
<tr>
<th>Cation</th>
<th>Sample 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sodium</td>
<td>80423</td>
</tr>
<tr>
<td>Calcium</td>
<td>18938</td>
</tr>
<tr>
<td>Potassium</td>
<td>6800</td>
</tr>
<tr>
<td>Magnesium</td>
<td>889</td>
</tr>
<tr>
<td>Iron</td>
<td>82.29</td>
</tr>
<tr>
<td>Boron</td>
<td>364</td>
</tr>
<tr>
<td>pH</td>
<td>5.68</td>
</tr>
<tr>
<td>SG</td>
<td>1.187</td>
</tr>
<tr>
<td>TDS</td>
<td>275000</td>
</tr>
</tbody>
</table>

- **Cation**
- **Sample 1**
 - Sodium: 80423
 - Calcium: 18938
 - Potassium: 6800
 - Magnesium: 889
 - Iron: 82.29
 - Boron: 364
 - pH: 5.68
 - SG: 1.187
 - TDS: 275000

Graph:
- BHST [degF] / Shear Rate [1/s] vs. Elapsed Time [hh:mm]
- Viscosity [cP] vs. Elapsed Time [hh:mm]
Development of Modern Chemistries

Increased Compound Restrictions

Time

Traditional Fracturing Additive Portfolio

Green Chemistry

Traditional Fracturing Additive Portfolio

Stimulation Fluids Engineering

Green Chemistry

Traditional Fracturing Additive Portfolio

Stimulation Fluids Engineering

Green Chemistry

Stimulation Fluids Engineering
The Schlumberger Definition

<table>
<thead>
<tr>
<th>Category</th>
<th>Constituents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority Pollutants & SDWA (US EPA)</td>
<td>231 Constituents</td>
</tr>
<tr>
<td>Known Carcinogens (REACH)</td>
<td>1018 Constituents</td>
</tr>
<tr>
<td>Known Mutagens (REACH)</td>
<td>423 Constituents</td>
</tr>
<tr>
<td>Known Reprotoxins (REACH)</td>
<td>217 Constituents</td>
</tr>
<tr>
<td>Nonylphenol & Alkylphenol Ethoxylates</td>
<td>31 Constituents</td>
</tr>
<tr>
<td>Suspected Carcinogens (REACH)</td>
<td>186 Constituents</td>
</tr>
<tr>
<td>Suspected Mutagens (REACH)</td>
<td>195 Constituents</td>
</tr>
<tr>
<td>Suspected Reprotoxins (REACH)</td>
<td>129 Constituents</td>
</tr>
</tbody>
</table>

91.6% Meets the Criteria

8.4% Does not meet the criteria
Transparency is a Must…

To Gain Public Trust…
… and to Allow Well Operators to Prioritize Appropriate Chemistries

- System-Style Disclosure
- Includes CAS Registry Numbers
- Process Widely Accepted:
 - Frac Focus (USA)
 - Frac Focus (Canada)
 - IOGP’s Voluntary Disclosure Process

List of Schlumberger Systems Pumped, including system volumes and additive descriptions for services provided during treatment

<table>
<thead>
<tr>
<th>Fluid Description(s)</th>
<th>Contains: Water, Activator, Bactericide, Breaker, Buffer, Clay Control, Crosslinker, Gelling Agent, Propping Agent, Scale Inhibitor, Stabilizing Agent, Surfactant</th>
</tr>
</thead>
<tbody>
<tr>
<td>OpenFRAC XL</td>
<td>100,000 Gal</td>
</tr>
</tbody>
</table>

List of chemical constituents with CAS numbers and mass fractions. Adds to 100% of known constituents

- 14808-60-7: Crystalline silica
- 9000-30-6: Guar gum
- 1310-73-2: Sodium hydoxide
- 67-48-1: Cholinium chloride
- 7772-98-7: Sodium thiosulphate
- 7789-18-0: Sodium bromate
- 1332-77-0: Potassium borate
- 31726-34-8: Polyethylene glycol monohexyl ether
- 65997-18-9: Calcium magnesium sodium phosphate frit
- 55566-30-8: Tetrakis(hydroxymethyl)phosphonium sulfate
- 1310-58-3: Potassium hydroxide
- 56-81-5: Glycerol
- 7631-86-9: Non-crystalline silica
- 61789-77-3: Dicoco dimethyl quaternary ammonium chloride
- 67-62-0: Propan-2-ol
- 9012-54-8: Hemicellulase enzyme
- 57-50-1: Sucrose
- 107-21-1: Ethane-1,2-diol

© Schlumberger 2013. Used by EXAMPLE CLIENT by permission.