Natural Gas Demand for the U.S. Power Sector

Forum on Global Energy, Economy, and Security

Michael E. Webber
Aspen Institute, Aspen, CO
July 25, 2017
The Power Sector Is Changing: Market

• Old products:
 – Power: kW
 – Electricity: kWh

• Markets use an auction
 – Bid stacks arrange power cheapest to most expensive

• New services:
 – Fast ramping
 – Contingency/Supplemental reserves
 – Non-spinning reserves
 – Spinning reserves
 – Regulation up/down
 – Fast responding regulation up/down
 – Primary frequency response
 – Fast frequency response
 – Reactive power management
 – Synchronous inertial response
Prices change with demand
Prices change with demand

Generator Type
- Biomass
- Coal
- NG CC
- NG Other
- Nuclear
- Renewable

Renewables Online: 0 GW
Demand: 46 GW
Gas Price: $3.50
Elec. Price: $32.69

Marginal Cost ($/MWh)

ERCOT Load (GW)

Time: 0:00
Electricity prices change with natgas prices

![Graph showing the relationship between electricity prices and natgas prices. The graph illustrates how electricity prices change with different levels of natural gas prices and corresponding load demands.]
Electricity prices change with natgas prices
Increasing Renewables Lowers Electricity Prices

Renewables Online: 2 GW
Demand: 40 GW
Gas Price: $3.50
Elec. Price: $31.24
Increasing Renewables Lowers Electricity Prices

- **Generator Types**:
 - Biomass
 - Coal
 - NG CC
 - NG Other
 - Nuclear
 - Renewable

- **Renewables Online**: 2 GW
- **Demand**: 40 GW
- **Gas Price**: $3.50
- **Electric Price**: $31.24

Marginal Cost ($/MWh)

ERCOT Load (GW)
The Power Sector Is Changing: Environment

• Regulations seek to reduce environmental impact
 – Emissions: CO₂, NOₓ, SOₓ, Hg, PM₂.₅, PM₁₀,...
 – Water: fuel production, power plant cooling,...
• Winners: wind, solar, natural gas
Despite Water Needs of Hydraulic Fracturing, Switching From Coal to Natural Gas Combined Cycle Saves Water

Texas Fleet Average Water Consumption per kWh

Source: Grubert, Beach and Webber • Graphic: Michael E. Webber, The University of Texas at Austin
There is Tension Between CO\textsubscript{2} and H\textsubscript{2}O in the Power Sector

CO\textsubscript{2} Emissions vs. Water Consumption

Graphic: Michael E. Webber, The University of Texas at Austin

[Source: NETL, DoE, Webber]

Dr. Michael Webber
Aspen Institute Global Energy Forum
July 25, 2017
There is Tension Between CO\textsubscript{2} and H\textsubscript{2}O in the Power Sector

CO\textsubscript{2} Emissions vs. Water Consumption

(Graphic: Michael E. Webber, The University of Texas at Austin)

<table>
<thead>
<tr>
<th>Rank</th>
<th>Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coal</td>
</tr>
<tr>
<td>2</td>
<td>Coal, IGCC</td>
</tr>
<tr>
<td>3</td>
<td>Natural Gas Combustion Turbine</td>
</tr>
<tr>
<td>4</td>
<td>Natural Gas Steam Generator</td>
</tr>
<tr>
<td>5</td>
<td>Natural Gas Combined Cycle</td>
</tr>
<tr>
<td>6</td>
<td>Coal w/capture</td>
</tr>
<tr>
<td>7</td>
<td>Coal, IGCC w/capture</td>
</tr>
<tr>
<td>8</td>
<td>Natural Gas Combined Cycle w/capture</td>
</tr>
<tr>
<td>9</td>
<td>Solar CSP</td>
</tr>
<tr>
<td>10</td>
<td>Nuclear (typ. Gen II)</td>
</tr>
<tr>
<td>11</td>
<td>Nuclear Small Modular Reactor</td>
</tr>
<tr>
<td>12</td>
<td>Solar PV, Wind</td>
</tr>
</tbody>
</table>

[Source: NETL, DoE, Webber]
There is Tension Between CO\textsubscript{2} and H\textsubscript{2}O in the Power Sector

CO\textsubscript{2} Emissions vs. Water Consumption

Graphic: Michael E. Webber, The University of Texas at Austin

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Coal</td>
</tr>
<tr>
<td>2</td>
<td>Coal, IGCC</td>
</tr>
<tr>
<td>3</td>
<td>Natural Gas Combustion Turbine</td>
</tr>
<tr>
<td>4</td>
<td>Natural Gas Steam Generator</td>
</tr>
<tr>
<td>5</td>
<td>Natural Gas Combined Cycle</td>
</tr>
<tr>
<td>6</td>
<td>Coal w/capture</td>
</tr>
<tr>
<td>7</td>
<td>Coal, IGCC w/capture</td>
</tr>
<tr>
<td>8</td>
<td>Natural Gas Combined Cycle w/capture</td>
</tr>
<tr>
<td>9</td>
<td>Solar CSP</td>
</tr>
<tr>
<td>10</td>
<td>Nuclear (typ. Gen II)</td>
</tr>
<tr>
<td>11</td>
<td>Nuclear Small Modular Reactor</td>
</tr>
<tr>
<td>12</td>
<td>Solar PV, Wind</td>
</tr>
</tbody>
</table>

[Source: NETL, DoE, Webber]
Market winners: solar, wind and natural gas

• Low marginal price: solar, wind
 – Cheap wind and solar beat everything
 – Cheap gas beats coal, nuclear

• Ancillary services: natural gas

• Environmental impact: wind, solar, natural gas
 – Nuclear good for emissions, bad for water
In 2016, natural gas exceeded coal for the first time in the U.S. electricity generation mix.
In 2016, natural gas exceeded coal for the first time in the U.S. electricity generation mix

Source: U.S. Energy Information Administration / January 2017 Monthly Energy Review (7.2a) • Graphic: Michael E. Webber, The University of Texas at Austin
Natural Gas Faces Headwinds to Further Adoption In the U.S. Power Sector

• Renewables will get cheaper
• Leak at Aliso Canyon
• Gas is low carbon but it is not zero carbon
• Public resistance to fracking is not declining
• Demand from other sectors such as chemicals or exports give upward price pressure
• Price volatility
 – Lack of long-term fixed price contract
 – Oscar Wyatt
Michael E. Webber, Ph.D.

Deputy Director, Energy Institute
Co-Director, Clean Energy Incubator
Josey Centennial Professor in Energy Resources
Professor, Mechanical Engineering
The University of Texas at Austin

@MichaelEWebber
webber@mail.utexas.edu
www.webberenergygroup.com